關鍵詞:未知物質分析 成分鑒定 添加劑成分分析 石墨烯/碳纖維成分分析 高分子材料成分分析 納米材料成分分析
石墨烯(Graphene)是一種由碳原子以sp²雜化軌道組成六角型呈蜂巢晶格的二維碳納米材料,它具有優異的光學、電學、力學特性,在材料學、微納加工、能源、生物醫學和藥物傳遞等方面具有重要的應用前景,被認為是一種未來革命性的材料。
內部結構
石墨烯內部碳原子的排列方式與石墨單原子層一樣以sp2雜化軌道成鍵,并有如下的特點:碳原子有4個價電子,其中3個電子生成sp2鍵,即每個碳原子都貢獻一個位于pz軌道上的未成鍵電子,近鄰原子的pz軌道與平面成垂直方向可形成π鍵,新形成的π鍵呈半填滿狀態。研究證實,石墨烯中碳原子的配位數為3,每兩個相鄰碳原子間的鍵長為1.42×10-10米,鍵與鍵之間的夾角為120°。除了σ鍵與其他碳原子鏈接成六角環的蜂窩式層狀結構外,每個碳原子的垂直于層平面的pz軌道可以形成貫穿全層的多原子的大π鍵(與苯環類似),因而具有優良的導電和光學性能。
力學特性
石墨烯是已知強度最高的材料之一,同時還具有很好的韌性,且可以彎曲,石墨烯的理論楊氏模量達1.0TPa,固有的拉伸強度為130GPa。而利用氫等離子改性的還原石墨烯也具有非常好的強度,平均模量可大0.25TPa。 由石墨烯薄片組成的石墨紙擁有很多的孔,因而石墨紙顯得很脆,然而,經氧化得到功能化石墨烯,再由功能化石墨烯做成石墨紙則會異常堅固強韌。
電子效應
石墨烯在室溫下的載流子遷移率約為15000cm2/(V·s),這一數值超過了硅材料的10倍,是目前已知載流子遷移率最高的物質銻化銦(InSb)的兩倍以上。在某些特定條件下如低溫下,石墨烯的載流子遷移率甚至可高達250000cm2/(V·s)。與很多材料不一樣,石墨烯的電子遷移率受溫度變化的影響較小,50~500K之間的任何溫度下,單層石墨烯的電子遷移率都在15000cm2/(V·s)左右。
另外,石墨烯中電子載體和空穴載流子的半整數量子霍爾效應可以通過電場作用改變化學勢而被觀察到,而科學家在室溫條件下就觀察到了石墨烯的這種量子霍爾效應。石墨烯中的載流子遵循一種特殊的量子隧道效應,在碰到雜質時不會產生背散射,這是石墨烯局域超強導電性以及很高的載流子遷移率的原因。石墨烯中的電子和光子均沒有靜止質量,他們的速度是和動能沒有關系的常數。
石墨烯是一種零距離半導體,因為它的傳導和價帶在狄拉克點相遇。在狄拉克點的六個位置動量空間的邊緣布里淵區分為兩組等效的三份。相比之下,傳統半導體的主要點通常為Γ,動量為零。
熱性能
石墨烯具有非常好的熱傳導性能。純的無缺陷的單層石墨烯的導熱系數高達5300W/mK,是目前為止導熱系數最高的碳材料,高于單壁碳納米管(3500W/mK)和多壁碳納米管(3000W/mK)。當它作為載體時,導熱系數也可達600W/mK。此外,石墨烯的彈道熱導率可以使單位圓周和長度的碳納米管的彈道熱導率的下限下移。
光學特性
石墨烯具有非常良好的光學特性,在較寬波長范圍內吸收率約為2.3%,看上去幾乎是透明的。在幾層石墨烯厚度范圍內,厚度每增加一層,吸收率增加2.3%。大面積的石墨烯薄膜同樣具有優異的光學特性,且其光學特性隨石墨烯厚度的改變而發生變化。這是單層石墨烯所具有的不尋常低能電子結構。室溫下對雙柵極雙層石墨烯場效應晶體管施加電壓,石墨烯的帶隙可在0~0.25eV間調整。施加磁場,石墨烯納米帶的光學響應可調諧至太赫茲范圍。
當入射光的強度超過某一臨界值時,石墨烯對其的吸收會達到飽和。這些特性可以使得石墨烯可以用來做被動鎖模激光器。這種獨特的吸收可能成為飽和時輸入光強超過一個閾值,這稱為飽和影響,石墨烯可飽和容易下可見強有力的激勵近紅外地區,由于環球光學吸收和零帶隙。由于這種特殊性質,石墨烯具有廣泛應用在超快光子學。石墨烯/氧化石墨烯層的光學響應可以調諧電。更密集的激光照明下,石墨烯可能擁有一個非線性相移的光學非線性克爾效應。
溶解性:在非極性溶劑中表現出良好的溶解性 ,具有超疏水性和超親油性。
熔點:科學家在2015年的研究中表示約4125K,有其他研究表明熔點可能在5000K左右。
其他性質:可以吸附和脫附各種原子和分子。
石墨烯的化學性質與石墨類似,石墨烯可以吸附并脫附各種原子和分子。當這些原子或分子作為給體或受體時可以改變石墨烯載流子的濃度,而石墨烯本身卻可以保持很好的導電性。但當吸附其他物質時,如H+和OH-時,會產生一些衍生物,使石墨烯的導電性變差,但并沒有產生新的化合物。因此,可以利用石墨來推測石墨烯的性質。例如石墨烷的生成就是在二維石墨烯的基礎上,每個碳原子多加上一個氫原子,從而使石墨烯中sp2碳原子變成sp3雜化。可以在實驗室中通過化學改性的石墨制備的石墨烯的可溶性片段。
化合物
氧化石墨烯(grapheneoxide,GO):一種通過氧化石墨得到的層狀材料。體相石墨經發煙濃酸溶液處理后,石墨烯層被氧化成親水的石墨烯氧化物,石墨層間距由氧化前的3.35Å增加到7~10Å,經加熱或在水中超聲剝離過程很容易形成分離的石墨烯氧化物片層結構。XPS、紅外光譜(IR)、固體核磁共振譜(NMR)等表征結果顯示石墨烯氧化物含有大量的含氧官能團,包括羥基、環氧官能團、羰基、羧基等。羥基和環氧官能團主要位于石墨的基面上,而羰基和羧基則處在石墨烯的邊緣處。
石墨烷(graphane):可通過石墨烯與氫氣反應得到,是一種飽和的碳氫化合物,具有分子式(CH)n,其中所有的碳是sp3雜化并形成六角網絡結構,氫原子以交替形式從石墨烯平面的兩端與碳成鍵,石墨烷表現出半導體性質,具有直接帶隙。
氮摻雜石墨烯或氮化碳(carbonnitride):在石墨烯晶格中引入氮原子后變成氮摻雜的石墨烯,生成的氮摻雜石墨烯表現出較純石墨烯更多優異的性能,呈無序、透明、褶皺的薄紗狀,部分薄片層疊在一起,形成多層結構,顯示出較高的比電容和良好的循環壽命。
生物相容性:羧基離子的植入可使石墨烯材料表面具有活性功能團,從而大幅度提高材料的細胞和生物反應活性。石墨烯呈薄紗狀與碳納米管的管狀相比,更適合于生物材料方面的研究。并且石墨烯的邊緣與碳納米管相比,更長,更易于被摻雜以及化學改性,更易于接受功能團。
氧化性:可與活潑金屬反應。
還原性:可在空氣中或是被氧化性酸氧化,通過該方法可以將石墨烯裁成小碎片。 石墨烯氧化物是通過石墨氧化得到的層狀材料,經加熱或在水中超聲剝離過程很容易形成分離的石墨烯氧化物片層結構。
加成反應:利用石墨烯上的雙鍵,可以通過加成反應,加入需要的基團。
穩定性:石墨烯的結構非常穩定,碳碳鍵(carbon-carbon bond)僅為1.42。石墨烯內部的碳原子之間的連接很柔韌,當施加外力于石墨烯時,碳原子面會彎曲變形,使得碳原子不必重新排列來適應外力,從而保持結構穩定。這種穩定的晶格結構使石墨烯具有優秀的導熱性。另外,石墨烯中的電子在軌道中移動時,不會因晶格缺陷或引入外來原子而發生散射。由于原子間作用力十分強,在常溫下,即使周圍碳原子發生擠撞,石墨烯內部電子受到的干擾也非常小。同時,石墨烯有芳香性,具有芳烴的性質。
現今材料分析測試技術高速發展,材料分析不僅集中在材料整體成分分析,對晶體結構分析和表面形貌觀察也尤為重要。
例如,通過衍射儀,可進行單晶結構分析,可提供分子三維尺度的精確和精密測量,從而完全獲得化學物的結構信息,包括原子的連接方式、分子構象、準確的鍵長鍵角等數據,以及原子的對稱性及三維空間的排列、堆積方式;通過高倍掃描電鏡,可進行粉末、微粒樣品形態測定;金屬、陶瓷、礦物、水泥、半導體、紙張、塑料、食品、農作物、細胞等材料的顯微形貌分析。
通過分析材料的晶體結構和形貌特征,可以進一步對材料的力學性能、燃燒性能、抗老化性能等的缺陷進行理論分析,進一步的優化生產工藝。
分析項目:
l 分析材料表面的形貌表面元素組成,找出影響表面性能的裂痕,雜質元素
l 觀察塑料,橡膠,化纖等高分子材料的與助劑的混合程度以及多種聚合物所共聚而成的材料的相容性
l 分析材料的結晶度,晶型
l 分析多孔材料的比表面積,微孔量
(形貌分析,表觀分析,表觀特征分析,表觀特性分析,晶體結構分析,晶體結構檢測,表面結構分析,表面特性分析,表觀特征檢測)
應用領域:
l 可進行粉末、微粒樣品形態測定;
l 金屬、陶瓷、礦物、水泥、半導體、紙張、塑料、食品、農作物、細胞等材料的顯微形貌分析。
l 通過分析材料的晶體結構和形貌特征,可以進一步對材料的力學性能、燃燒性能、抗老化性能等的缺陷進行理論分析,進一步的優化生產工藝。