ASTM C552 Standard Specification for Cellular Glass Thermal Insulation
ASTM C552多孔玻璃隔熱材料標準規范
This specification covers the composition, sizes, dimensions, and physical properties of cellular glass thermal insulation. The material shall consist of a glass composition that has been foamed or cellulated under molten conditions, annealed, and set to form a rigid noncombustible material with hermetically sealed cells. The materials shall also be trimmed into rectangular or tapered blocks of standard dimensions. All specimens shall also comply with with qualification requirements such as compressive strength, flexural strength, water absorption, water vapor permeability, thermal conductivity, hot-surface performance, thermal conductivity and surface burning characteristics. These properties shall be determined in accordance with test methods specified herein.
This abstract is a brief summary of the referenced standard. It is informational only and not an official part of the standard; the full text of the standard itself must be referred to for its use and application. ASTM does not give any warranty express or implied or make any representation that the contents of this abstract are accurate, complete or up to date.
1. Scope
1.1 This specification covers the composition, sizes, dimensions, and physical properties of cellular glass thermal insulation intended for use on surfaces operating at temperatures between 450 and 800°F (268 and 427°C). Special fabrication or techniques for pipe insulation, or both, may be required for application in the temperature range from 250 to 800°F (121 to 427°C). Contact the manufacturer for recommendations regarding fabrication and application procedures for use in this temperature range. For specific applications, the actual temperature limits shall be agreed upon between the manufacturer and the purchaser.
1.2 It is anticipated that single-layer pipe insulation in half sections or the inner layer of a multilayer system may exhibit stress cracks above 250°F (122°C).
1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are provided for information and may be approximate.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2. Referenced Documents (purchase separately)
ASTM Standards
C165 Test Method for Measuring Compressive Properties of Thermal Insulations
C168 Terminology Relating to Thermal Insulation
C177 Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
C203 Test Methods for Breaking Load and Flexural Properties of Block-Type Thermal Insulation
C240 Test Methods of Testing Cellular Glass Insulation Block
C302 Test Method for Density and Dimensions of Preformed Pipe-Covering-Type Thermal Insulation
C303 Test Method for Dimensions and Density of Preformed Block and Board-Type Thermal Insulation
C335 Test Method for Steady-State Heat Transfer Properties of Pipe Insulation
C390 Practice for Sampling and Acceptance of Thermal Insulation Lots
C411 Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation
C450 Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging
C518 Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
C585 Practice for Inner and Outer Diameters of Thermal Insulation for Nominal Sizes of Pipe and Tubing
C692 Test Method for Evaluating the Influence of Thermal Insulations on External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel
C795 Specification for Thermal Insulation for Use in Contact with Austenitic Stainless Steel
C871 Test Methods for Chemical Analysis of Thermal Insulation Materials for Leachable Chloride, Fluoride, Silicate, and Sodium Ions
C1045 Practice for Calculating Thermal Transmission Properties Under Steady-State Conditions
C1058 Practice for Selecting Temperatures for Evaluating and Reporting Thermal Properties of Thermal Insulation
C1114 Test Method for Steady-State Thermal Transmission Properties by Means of the Thin-Heater Apparatus
C1639 Specification for Fabrication Of Cellular Glass Pipe And Tubing Insulation
D226 Specification for Asphalt-Saturated Organic Felt Used in Roofing and Waterproofing
D312 Specification for Asphalt Used in Roofing
E84 Test Method for Surface Burning Characteristics of Building Materials
E96/E96M Test Methods for Water Vapor Transmission of Materials
C168 Terminology Relating to Thermal Insulation
C177 Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
C203 Test Methods for Breaking Load and Flexural Properties of Block-Type Thermal Insulation
C240 Test Methods of Testing Cellular Glass Insulation Block
C302 Test Method for Density and Dimensions of Preformed Pipe-Covering-Type Thermal Insulation
C303 Test Method for Dimensions and Density of Preformed Block and Board-Type Thermal Insulation
C335 Test Method for Steady-State Heat Transfer Properties of Pipe Insulation
C390 Practice for Sampling and Acceptance of Thermal Insulation Lots
C411 Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation
C450 Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging
C518 Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
C585 Practice for Inner and Outer Diameters of Thermal Insulation for Nominal Sizes of Pipe and Tubing
C692 Test Method for Evaluating the Influence of Thermal Insulations on External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel
C795 Specification for Thermal Insulation for Use in Contact with Austenitic Stainless Steel
C871 Test Methods for Chemical Analysis of Thermal Insulation Materials for Leachable Chloride, Fluoride, Silicate, and Sodium Ions
C1045 Practice for Calculating Thermal Transmission Properties Under Steady-State Conditions
C1058 Practice for Selecting Temperatures for Evaluating and Reporting Thermal Properties of Thermal Insulation
C1114 Test Method for Steady-State Thermal Transmission Properties by Means of the Thin-Heater Apparatus
C1639 Specification for Fabrication Of Cellular Glass Pipe And Tubing Insulation
D226 Specification for Asphalt-Saturated Organic Felt Used in Roofing and Waterproofing
D312 Specification for Asphalt Used in Roofing
E84 Test Method for Surface Burning Characteristics of Building Materials
E96/E96M Test Methods for Water Vapor Transmission of Materials
ISO Document
ISO3951 Sampling Procedure and Charts for Inspection by Variables for Percent Defective
Index Terms
cellular glass; cellular materials; cellular materials-preformed thermal insulation; thermal insulating materials; thermal insulating materials-block and board; thermal insulating materials-block and pipe; thermal insulating materials-glass; thermal insulating materials-pipe;