压在透明的玻璃上c_又色又爽又黄又免费的视频软件_av无码专区亚洲av波多野结衣_国产在线每日都有更新 - www国产视频

阻燃防火材料-網上貿易平臺 | | WAP瀏覽
服務熱線:4006555305
當前位置: 首頁 » 防火測試中心 » 各國標準法規 » 美國 » 正文

ASTM C755熱絕緣用水蒸氣緩凝劑選擇的標準規范

放大字體  縮小字體 發布日期:2012-02-13   瀏覽次數:170  分享到: 分享到騰訊微博
ASTM C755熱絕緣用水蒸氣緩凝劑選擇的標準規范
ASTM C755 Standard Practice for Selection of Water Vapor Retarders for Thermal Insulation
ASTM C755熱絕緣用水蒸氣緩凝劑選擇的標準規范
Experience has shown that uncontrolled water entry into thermal insulation is the most serious factor causing impaired performance. Water entry into an insulation system may be through diffusion of water vapor, air leakage carrying water vapor, and leakage of surface water. Application specifications for insulation systems that operate below ambient dew-point temperatures should include an adequate vapor retarder system. This may be separate and distinct from the insulation system or may be an integral part of it. For selection of adequate retarder systems to control vapor diffusion, it is necessary to establish acceptable practices and standards.
Vapor Retarder Function—Water entry into an insulation system may be through diffusion of water vapor, air leakage carrying water vapor, and leakage of surface water. The primary function of a vapor retarder is to control movement of diffusing water vapor into or through a permeable insulation system. The vapor retarder system alone is seldom intended to prevent either entry of surface water or air leakage, but it may be considered as a second line of defense.
Vapor Retarder Performance—Design choice of retarders will be affected by thickness of retarder materials, substrate to which applied, the number of joints, available length and width of sheet materials, useful life of the system, and inspection procedures. Each of these factors will have an effect on the retarder system performance and each must be considered and evaluated by the designer.
Although this practice properly places major emphasis on selecting the best vapor retarders, it must be recognized that faulty installation techniques can impair vapor retarder performance. The effectiveness of installation or application techniques in obtaining design water vapor transmission (WVT) performance must be considered in the selection of retarder materials.
As an example of the evaluation required, it may be impractical to specify a lower “as installed” value, because difficulties of field application often will preclude “as installed” attainment of the inherent WVT values of the vapor retarder materials used. The designer could approach this requirement by selecting a membrane retarder material that has a lower permeance manufactured in 5-ft (1.5-m) width or a sheet material 20 ft (6.1 m) wide having a higher permeance. These alternatives may be approximately equivalent on an installed basis since the wider material has fewer seams and joints.
For another example, when selecting mastic or coating retarder materials, the choice of a product having a permeance value somewhat higher than the lowest obtainable might be justified on the basis of its easier application techniques, thus ensuring “as installed” system attainment of the specified permeance. The permeance of the substrate and its effects on the application of the retarder material must also be considered in this case.
1. Scope
1.1 This practice outlines factors to be considered, describes design principles and procedures for water vapor retarder selection, and defines water vapor transmission values appropriate for established criteria. It is intended for the guidance of design engineers in preparing vapor retarder application specifications for control of water vapor flow through thermal insulation. It covers commercial and residential building construction and industrial applications in the service temperature range from −40 to +150°F (−40 to +66°C). Emphasis is placed on the control of moisture penetration by choice of the most suitable components of the system.
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents (purchase separately)
ASTM Standards
C168 Terminology Relating to Thermal Insulation
C647 Guide to Properties and Tests of Mastics and Coating Finishes for Thermal Insulation
C921 Practice for Determining the Properties of Jacketing Materials for Thermal Insulation
C1136 Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation
E96/E96M Test Methods for Water Vapor Transmission of Materials
Index Terms
design; materials; selection; thermal insulation; vapor retarders; water vapor retarders; Thermal insulating materials (water vapor transmission); Vapor barriers; Water vapor retarders; Water vapor transmission (WVT)--thermal insulation ;

  詳情請咨詢
  防火資源網-阻燃防火測試中心
  電話:(+86)0592-5056213
  傳真:(+86)0592-5105807
  郵件:firetest@firetc.com

凡注明"防火資源網"的所有作品,由<防火資源網>整理編輯,任何組織未經<防火資源網>及其擁有者授權,不得復制、轉載、摘編或利用其它方式應用于任何商業行為。

 
 
[ 防火測試中心搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關閉窗口 ]  [ 返回頂部 ]

 

 
 
推薦防火測試
推薦圖文
點擊排行
 
 
網站首頁 | 廣告服務 | 關于我們 | 聯系方式 | 服務協議 | 版權聲明 | 網站地圖 | 友情鏈接 | 網站留言 | 舊版本 | 閩ICP備09009213號
?2019-2021 FIRETC.COM All Rights Reserved ? 備案號:閩ICP備09009213號-1在線客服 點擊QQ交談/留言 點擊QQ交談/留言